Violette Senille, Dominique Lelievre, Françoise Paquet, Norbert Garnier, Ned Lamb, Alain Legrand, Agnès F. Delmas, Céline Landon. Bing Fang, Hui Y Guo, Ming Zhang, Lu Jiang, Fa Z Ren. Dmitry I. Osmakov, Sergey A. Kozlov, Yaroslav A. Andreev, Sergey G. Koshelev, Nadezhda P. Sanamyan, Karen E. Sanamyan, Igor A. Dyachenko, Dmitry A. Bondarenko, Arkadii N. Murashev, Konstantin S. Mineev, Alexander S. Arseniev, Eugene V. Grishin. This contrasts with the X-ray structure of bovine lactoferrin, in which residues 1−13 (of LfcinB) form an α-helix. Mundim, Maria J.A. Marjolaine Arseneault, Sarah Bédard, Maxime Boulet-Audet and Michel Pézolet. Md. Lijuan Zhang,, Monisha G. Scott,, Hong Yan,, Lawrence D. Mayer, and. Unraveling the mechanisms of action of lactoferrin-derived antihypertensive peptides: ACE inhibition and beyond. The prospects of modifying the antimicrobial properties of milk. Expression of defensins in non-infected araneomorph spiders. Veerman, Jan G.M. Marieke I.A van der Kraan, Jasper Groenink, Kamran Nazmi, Enno C.I Veerman, Jan G.M Bolscher, Arie V Nieuw Amerongen. The NMR solution structure of LfcinB may be more relevant to membrane interaction than that suggested by the X-ray structure of intact lactoferrin. 6 Sirlei Daffre, Philippe Bulet, Alberto Spisni, Laurence Ehret-Sabatier, Elaine G. Rodrigues, Luiz R. Travassos. Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. Elrashdy M. Redwan, Nawal Abd El-Baky, Ahmed M. Al-Hejin, Mohammed N. Baeshen, Hussein A. Almehdar, Abdulrahman Elsaway, Abu-Bakr M. Gomaa, Saad Berki Al-Masaudi, Fahad A. Al-Fassi, Isam Eldin AbuZeid, Vladimir N. Uversky. Strøm, W. Stensen, J.S. Angela Richardson, Roberto de Antueno, Roy Duncan, David W. Hoskin. Stefania Galdiero, Annarita Falanga, Rossella Tarallo, Luigi Russo, Emilia Galdiero, Marco Cantisani, Giancarlo Morelli, Massimiliano Galdiero. Nadin Shagaghi, Enzo A. Palombo, Andrew H. A. Clayton, Mrinal Bhave. Significant antibacterial activity and synergistic effects of camel lactoferrin with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Masayuki Ikeda, Hiroshi Iijima, Ichizo Shinoda, Hiroshi Iwamoto, Yasuhiro Takeda. Jamie S. Mader, Daniel Smyth, Jean Marshall, David W. Hoskin. Ideally amphipathic β-sheeted peptides at interfaces: structure, orientation, affinities for lipids and hemolytic activity of (KL)mK peptides. as Specific Cell-surface Targets of Human Lactoferrin. Synthetic Porcine Lactoferricin with a 20-Residue Peptide Exhibits Antimicrobial Activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. Zhiru Tang, Youming Zhang, Adrian Francis Stewart, Meimei Geng, Xiangsha Tang, Qiang Tu, Yulong Yin. Nicolas Mandard, Denise Sy, Corinne Maufrais, Jean-Marc Bonmatin, Philippe Bulet, Charles Hetru, Françoise Vovelle. Howard N. Hunter, A. Ross Demcoe, Håvard Jenssen, Tore J. Gutteberg, Hans J. Vogel. cin Modelling of anti-HSV activity of lactoferricin analogues using amino acid descriptors. Xin Luan, Ye Wu, Yi-Wen Shen, Hong Zhang, Yu-Dong Zhou, Hong-Zhuan Chen, Dale G. Nagle, Wei-Dong Zhang. Killing of melanoma cells and their metastases by human lactoferricin derivatives requires interaction with the cancer marker phosphatidylserine. Morten B. Strøm, John S. Svendsen, Øystein Rekdal. Sabine Castano, Bernard Desbat, Jean Dufourcq. Karl Lohner, Eva Sevcsik, Georg Pabst. Get article recommendations from ACS based on references in your Mendeley library. The Pepsin Hydrolysate of Bovine Lactoferrin Causes a Collapse of the Membrane Potential in Escherichia coli O157:H7. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Antimicrobial Peptides from the Marine Fishes. Sheetal Sinha, Wun Jern Ng, Surajit Bhattacharjya. David J. Schibli, Peter M. Hwang, Hans J. Vogel. Repertoire of Structure–Activity-Based Novel Modified Peptides Elicits Enhanced Osteogenic Potential. David W. Hoskin, Ayyalusamy Ramamoorthy. Based on the solution structure, it is now possible to propose potential mechanisms for the antimicrobial action of LfcinB. Xiaoguang Wang, Pei Yang, Frederic Mondiot, Yaoxin Li, Daniel S. Miller, Zhan Chen, Nicholas L. Abbott. La lactoferrine : une protéine multifonctionnelle. Jeanette H. Andersen, H�vard Jenssen, Kjersti Sandvik, Tore J. Gutteberg. Zhiru Tang, Yulong Yin, Youming Zhang, Ruilin Huang, Zhihong Sun, Tiejun Li, Wuying Chu, Xiangfeng Kong, Lili Li, Meimei Geng, Qiang Tu. François Villemot, Riccardo Capelli, Giorgio Colombo, and Arjan van der Vaart . Candida Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses. The anti-papillomavirus activity of human and bovine lactoferricin. Your Mendeley pairing has expired. Biological and structural characterization of new linear gomesin analogues with improved therapeutic indices. Margitta Dathe,, Heike Nikolenko,, Jana Klose, and. Citations are the number of other articles citing this article, calculated by Crossref and updated daily. penetrates cells and delivers siRNA. Moniruzzaman, Masahito Yamazaki. Find more information on the Altmetric Attention Score and how the score is calculated. Peptide inhibitors against herpes simplex virus infections. The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. Comparison of NMR structures and model-membrane interactions of 15-residue antimicrobial peptides derived from bovine lactoferricinThis paper is one of a selection of papers published in this Special Issue, entitled 7th International Conference on Lactoferrin: Structure, Function, and Applications, and has undergone the Journal's usual peer review process.. Nannette Y. Yount, Arnold S. Bayer, Yan Q. Xiong, Michael R. Yeaman. Osmar N. Silva, William F. Porto, Ludovico Migliolo, Santi M. Mandal, Diego G. Gomes, Hortência H. S. Holanda, Rosa S. P. Silva, Simoni C. Dias, Maysa P. Costa, Carolina R. Costa, Maria R. Silva, Taia M. B. Rezende, Octavio L. Franco. AjithKumar. Sami Saadi, Nazamid Saari, Farooq Anwar, Azizah Abdul Hamid, Hasanah Mohd Ghazali. Antimicrobial peptides in mammalian and insect host defence. N-Acylated and d Enantiomer Derivatives of a Nonamer Core Peptide of Lactoferricin B Showing Improved Antimicrobial Activity. Cyclization Increases the Antimicrobial Activity and Selectivity of Arginine- and Tryptophan-Containing Hexapeptides. Bradley E. Britigan, Troy S. Lewis, Mari Waldschmidt, Michael L. McCormick, Arthur M. Krieg. Mau Sinha, Sanket Kaushik, Punit Kaur, Sujata Sharma, Tej P. Singh. A comparison of effects of pH on the thermal stability and conformation of caprine and bovine lactoferrin. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Zahidul Islam, Md. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis. LfcinB is a 25-residue antimicrobial peptide released by pepsin cleavage of lactoferrin, an 80 kDa iron-binding glycoprotein with many immunologically important functions. Supported by operating grants from the Medical Research Council of Canada to C.H.A. in vitro. Jamie S. Mader, Angela Richardson, Jayme Salsman, Deniz Top, Roberto de Antueno, Roy Duncan, David W. Hoskin. The solution structure of bovine lactoferricin (LfcinB) has been determined using 2D 1H NMR spectroscopy. Anticancer activities of bovine and human lactoferricin-derived peptides. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Elrashdy M. Redwan, Vladimir N. Uversky, Esmail M. El-Fakharany, Hussein Al-Mehdar. P.M.H. Sarah A. Almahboub, Tanja Narancic, Marc Devocelle, Shane T. Kenny, William Palmer-Brown, Cormac Murphy, Jasmina Nikodinovic-Runic, Kevin E. O’Connor. Chikindas. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus. Nataly Huertas, Zuly Monroy, Ricardo Medina, Javier Castañeda. Jeanette Hammer Andersen, Svein Are Osbakk, Lars Harry Vorland, Terje Traavik, Tore Jarl Gutteberg. Wataru Aoki, Nao Kitahara, Natsuko Miura, Hironobu Morisaka, Kouichi Kuroda, Mitsuyoshi Ueda. Bolscher, Vanaporn Wuthiekanun, Suwimol Taweechaisupapong. The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157:H7. David J Schibli, Raquel F Epand, Hans J Vogel, Richard M Epand. Effect of amino acid substitutions on the candidacidal activity of LFampin 265–284. Rational Design of Tryptophan-Rich Antimicrobial Peptides with Enhanced Antimicrobial Activities and Specificities. Christopher Murdock, Michael L. Chikindas, Karl R. Matthews. Secreted Lactoferrin and Lactoferrin-Related Peptides: Insight into Structure and Biological Functions. de Carvalho, Ludovico Migliolo, Jose R.S.A. Lactoferrin—a multifunctional protein with antimicrobial properties. Moniruzzaman, Jahangir Md. The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. Mathieu Heulot, Nicolas Jacquier, Sébastien Aeby, Didier Le Roy, Thierry Roger, Evgeniya Trofimenko, David Barras, Gilbert Greub, Christian Widmann. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. Identification and characterization of a bactericidal and proapoptotic peptide from cycas revoluta seeds with DNA binding properties. Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Please reconnect. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Apoptotic Death of Catia Longhi, Maria P. Conte, Michela Penta, Alessia Cossu, Giovanni Antonini, Fabiana Superti, Lucilla Seganti. Antimicrobial Lactoferrin Peptides: The Hidden Players in the Protective Function of a Multifunctional Protein. Mizanur Rahman Moghal, Farzana Hossain, Masahito Yamazaki. the Altmetric Attention Score and how the score is calculated. Jasper Groenink, Els Walgreen-Weterings, Wim 't Hof, Enno C.I Veerman, Arie V Nieuw Amerongen. B. C. Bryksa, Y. Horimoto, R. Y. Yada. Antibacterial and binding characteristics of bovine, ovine and caprine lactoferrins: a comparative study. Yan Q. Xiong, Arnold S. Bayer, Lisa Elazegui, Michael R. Yeaman. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. The influence of rough lipopolysaccharide structure on molecular interactions with mammalian antimicrobial peptides. Bolscher, Arie V. Nieuw Amerongen. Yifan Liu, Feifei Han, Yonggang Xie, Yizhen Wang. Ashoka Sreedhara, Ragnar Flengsrud, Vishweshwaraiah Prakash, Daniel Krowarsch, Thor Langsrud, Purnima Kaul, Tove G. Devold, Gerd E. Vegarud. Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. bLF Balancing Accuracy and Cost of Confinement Simulations by Interpolation and Extrapolation of Confinement Energies. A. Ianoul, H. Westwick, L. Nowacka, B. Quan. Identification of Lactoferricin B Intracellular Targets Using an Escherichia coli Proteome Chip. Studies on anticancer activities of antimicrobial peptides. Interaction of Polyphemusin I and Structural Analogs with Bacterial Membranes, Lipopolysaccharide, and Lipid Monolayers. Marcos A. Fázio, Laurence Jouvensal, Françoise Vovelle, Philippe Bulet, M. Terêsa M. Miranda, Sirlei Daffre, Antonio Miranda. Matthews, M.L. World Journal of Microbiology and Biotechnology. The Anticancer Peptide TAT-RasGAP317−326 Exerts Broad Antimicrobial Activity. Yangmei Li, Nina Bionda, Austin Yongye, Phaedra Geer, Maciej Stawikowski, Predrag Cudic, Karina Martinez, Richard A. Houghten. Lactoferrin Binds CpG-Containing Oligonucleotides and Inhibits Their Immunostimulatory Effects on Human B Cells. Entry of a Six-Residue Antimicrobial Peptide Derived from Lactoferricin B into Single Vesicles and Escherichia coli Cells without Damaging their Membranes. Leonard T. Nguyen, David I. Chan, Laura Boszhard, Sebastian A.J. van der Kraan, Christel van der Made, Kamran Nazmi, Wim van‘t Hof, Jasper Groenink, Enno C.I. Gianluca Bello, Alice Bodin, M. Jayne Lawrence, David Barlow, A. James Mason, Robert D. Barker, Richard D. Harvey. Telephone:  403-239-1138. Important structural features of 15-residue lactoferricin derivatives and methods for improvement of antimicrobial activity. Nicolas Mandard, Philippe Bulet, Anita Caille, Sirlei Daffre, Françoise Vovelle. -Infected Human Macrophages Induced by Lactoferricin B, A Bovine Lactoferrin-Derived Peptide. NMR structure and localization of the host defense antimicrobial peptide thanatin in zwitterionic dodecylphosphocholine micelle: Implications in antimicrobial activity. Action of antimicrobial peptides and cell-penetrating peptides on membrane potential revealed by the single GUV method. Weiguo Jing, John S. Svendsen, Hans J. Vogel. Mauricio Arias, Lindsey J. McDonald, Evan F. Haney, Kamran Nazmi, Jan G. M. Bolscher, Hans J. Vogel. Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. Membrane potential is vital for rapid permeabilization of plasma membranes and lipid bilayers by the antimicrobial peptide lactoferricin B. Tjitske Sijbrandij, Antoon J. Ligtenberg, Kamran Nazmi, Petra A. M. van den Keijbus, Enno C. I. Veerman, Jan G. M. Bolscher, Floris J. Bikker. Solution NMR studies of amphibian antimicrobial peptides: Linking structure to function?. and H.J.V. This article is cited by Effects of Rationally Designed Physico-Chemical Variants of the Peptide PuroA on Biocidal Activity towards Bacterial and Mammalian Cells. Dagmar Zweytick, Georg Pabst, Peter M. Abuja, Alexander Jilek, Sylvie E. Blondelle, Jörg Andrä, Roman Jerala, Daniel Monreal, Guillermo Martinez de Tejada, Karl Lohner. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Journal of Chemical Theory and Computation. Many hydrophilic and positively charged residues surround the hydrophobic surface, giving LfcinB an amphipathic character. Yu-Hsuan Tu, Yu-Hsuan Ho, Ying-Chih Chuang, Po-Chung Chen, Chien-Sheng Chen, . John S. Mjøen Svendsen, Thomas M. Grant, David Rennison, Margaret A. Brimble. Current Opinion in Solid State and Materials Science. McCann, A. Lee, J. Wan, H. Roginski, M.J. Coventry. Structure of the Antimicrobial, Cationic Hexapeptide Cyclo(RRWWRF) and Its Analogues in Solution and Bound to Detergent Micelles. View the profiles of people named Beatrice Cossu. Sea Anemone Peptide with Uncommon β-Hairpin Structure Inhibits Acid-sensing Ion Channel 3 (ASIC3) and Reveals Analgesic Activity. Biochimica et Biophysica Acta (BBA) - Biomembranes. Cn-AMP1: A new promiscuous peptide with potential for microbial infections treatment. Antibacterial activity of 15-residue lactoferricin derivatives. In Vitro Characterization of Lactoferrin Aggregation and Amyloid Formation. Structure and Association of Human Lactoferrin Peptides with Escherichia coli Lipopolysaccharide. Bovine and human lactoferricin peptides: chimeras and new cyclic analogs. Listeria Monocytogenes Journal of Agricultural and Food Chemistry. K.B. Synthesis and characterization of the colistin peptide polymyxin E1 and related antimicrobial peptides. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin–lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Annick Pierce, Dominique Legrand, Joël Mazurier. Nadin Shagaghi, Andrew H. A. Clayton, Marie-Isabel Aguilar, Tzong-Hsien Lee, Enzo A. Palombo, Mrinal Bhave. Blood Compatibility—An Important but Often Forgotten Aspect of the Characterization of Antimicrobial Peptides for Clinical Application. Victoria Carter, Ann Underhill, Ibrahima Baber, Lakamy Sylla, Mounirou Baby, Isabelle Larget-Thiery, Agnès Zettor, Catherine Bourgouin, Ülo Langel, Ingrid Faye, Laszlo Otvos, John D. Wade, Mamadou B. Coulibaly, Sekou F. Traore, Frederic Tripet, Paul Eggleston, Hilary Hurd, . The NMR structure of LfcinB reveals a somewhat distorted antiparallel β-sheet. LTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironment. At-Line Methods for Controlling Microbial Growth and Spoilage in Meat Processing Abattoirs. International Journal of Immunopathology and Pharmacology. Fax:  403-289-9311. Md. Oliveira, Ludovico Migliolo, Maysa P. Costa, Carolina R. Costa, Maria R.R. Md. 1 Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity. Jan Bolscher, Kamran Nazmi, Jan van Marle, Wim van ‘t Hof, Enno Veerman. T. Kline, D. Holub, J. Therrien, T. Leung, D. Ryckman. Muthuirulan Pushpanathan, Paramasamy Gunasekaran, Jeyaprakash Rajendhran. David I. Chan, Elmar J. Prenner, Hans J. Vogel. Evan F. Haney, Sarah C. Mansour, Robert E. W. Hancock. Chapter Five Liposome-Based Biomembrane Mimetic Systems: Implications for Lipid–Peptide Interactions. Sabrina Riedl, Beate Rinner, Helmut Schaider, Karl Lohner, Dagmar Zweytick. Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. The relationship between peptide structure and antibacterial activity. and H.J.V. Increased antibacterial activity of 15-residue murine lactoferricin derivatives. Antimicrobial Peptides for Therapeutic Applications: A Review. Zahidul Islam, Sabrina Sharmin, Hideo Dohra, and Masahito Yamazaki . Mizanur Rahman Moghal, Md. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane. Methylation Modification. Ravinder Nagpal, Pradip Behare, Rajiv Rana, Ashwani Kumar, Manoj Kumar, Sanu Arora, Fransesco Morotta, Shalini Jain, Hariom Yadav. Bolscher, Hans J. Vogel. Antimicrobial Peptides: Versatile Biological Properties. Solution Structure of a Novel Tryptophan-Rich Peptide with Bidirectional Antimicrobial Activity. Pramod Shah, Felix Shih-Hsiang Hsiao, Yu-Hsuan Ho, Chien-Sheng Chen. LfcinB bears numerous similarities to a vast number of cationic peptides which exert their antimicrobial activities through membrane disruption. The solution structure of bovine lactoferricin (LfcinB) has been determined using 2D 1H NMR spectroscopy. Bolscher, M. Eric Hyndman, Robert E.W. Properties and mechanisms of action of naturally occurring antifungal peptides. Zaat, Hans J. Vogel. Morten B Strøm, Bengt Erik Haug, Øystein Rekdal, Merete L Skar, Wenche Stensen, John S Svendsen. LfcinB has an extended hydrophobic surface comprised of residues Phe1, Cys3, Trp6, Trp8, Pro16, Ile18, and Cys20. Evan F. Haney, Kamran Nazmi, Jan G.M. The six amino acid antimicrobial peptide Evan F. Haney, Fanny Lau, Hans J. Vogel. Killer Bee Molecules: Antimicrobial Peptides as Effector Molecules to Target Sporogonic Stages of Plasmodium. Evan F. Haney, Safia Nathoo, Hans J. Vogel, Elmar J. Prenner. 513.8k Followers, 533 Following, 38 Posts - See Instagram photos and videos from Bea (@beatricecossuu) Nicole L. van der Weerden, Mark R. Bleackley, Marilyn A. Anderson. The proteome targets of intracellular targeting antimicrobial peptides. Evan F. Haney, Howard N. Hunter, Katsumi Matsuzaki, Hans J. Vogel. Archetypal tryptophan-rich antimicrobial peptides: properties and applications. Influence of N-acylation of a peptide derived from human lactoferricin on membrane selectivity. C.A. Pauline P Ward, Sonia Uribe-Luna, Orla M Conneely. Dissociation of Antimicrobial and Hemolytic Activities of Gramicidin S through N Christian Appelt, Axel Wessolowski, J. Arvid Söderhäll, Margitta Dathe, Peter Schmieder. Journal of Biomolecular Structure and Dynamics. Victor Vivcharuk, Bruno Tomberli, Igor S. Tolokh, C. G. Gray. Farzana Hossain, Md. You have to login with your ACS ID befor you can login with your Mendeley account. Daniel Y.C. A Synthetic Congener Modeled on a Microbicidal Domain of Thrombin- Induced Platelet Microbicidal Protein 1 Recapitulates Staphylocidal Mechanisms of the Native Molecule. Human Antimicrobial Peptides: Spectrum, Mode of Action and Resistance Mechanisms. Sebastien Farnaud, Alpesh Patel, Edward W. Odell, Robert W. Evans. Interactions of lactoferricin B derivatives with model cell membrane studied by Raman spectroscopy. Alan Vega-Bautista, Mireya de la Garza, Julio César Carrero, Rafael Campos-Rodríguez, Marycarmen Godínez-Victoria, Maria Elisa Drago-Serrano. Rational redesign of porcine pepsinogen containing an antimicrobial peptide. Lactoferricin influences early events of Listeria monocytogenes infection in THP-1 human macrophages. These metrics are regularly updated to reflect usage leading up to the last few days. 162 publications. Young Sook Koo, Jung Min Kim, In Yup Park, Byung Jo Yu, Su A Jang, Key-Sun Kim, Chan Bae Park, Ju Hyun Cho, Sun Chang Kim. S. Ravichandr, K. Kumaravel, G. Rameshkuma, T.T. Structure of a Synthetic Fragment of the Lipopolysaccharide (LPS) Binding Protein When Bound to LPS and Design of a Peptidic LPS Inhibitor. Chen. Tommy Baumann, Lucia Kuhn-Nentwig, Carlo R. Largiadèr, Wolfgang Nentwig. Inhibitory Effect of Bovine Lactoferrin on Catechol-O-Methyltransferase. Cytotoxic and antitumor peptides as novel chemotherapeutics. Mini-review: Lactoferrin: a bioinspired, anti-biofilm therapeutic. Frédéric R. Sallmann, Sophie Baveye-Descamps, Franc Pattus, Valérie Salmon, Norica Branza, Geneviève Spik, Dominique Legrand. LfcinB is a 25-residue antimicrobial peptide released by pepsin cleavage of lactoferrin, an 80 kDa iron-binding glycoprotein with many immunologically important functions. André C. Amaral, Osmar N. Silva, Nathália C.C.R. In Silico Structural Evaluation of Short Cationic Antimicrobial Peptides. Sakawrat Kanthawong, Kamran Nazmi, Surasakdi Wongratanacheewin, Jan G.M. Structure–function studies of chemokine-derived carboxy-terminal antimicrobial peptides. Study of the Interaction of Lactoferricin B with Phospholipid Monolayers and Bilayers. Androctonin, a Novel Antimicrobial Peptide from Scorpion Primož Pristovšek,, Saša Simčič,, Branka Wraber, and. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles. : Solution Structure and Molecular Dynamics Simulations in the Presence of a Lipid Monolayer. The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Dominique Legrand, Annick Pierce, Jo?l Mazurier. The Impact of Lactoferrin on the Growth of Intestinal Inhabitant Bacteria. Advances in antimicrobial peptide immunobiology. In vitro susceptibility of Burkholderia pseudomallei to antimicrobial peptides. Ribosomally synthesized peptides from natural sources. Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Solution structure of a novelD-naphthylalanine substituted peptide with potential antibacterial and antifungal activities. Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Jiun-Ming Wu, Shu-Yi Wei, Heng-Li Chen, Kuo-Yao Weng, Hsi-Tsung Cheng, Jya-Wei Cheng. Paloma Manzanares, Juan B. Salom, Aurora García-Tejedor, Ricardo Fernández-Musoles, Pedro Ruiz-Giménez, José V. Gimeno-Alcañíz. Hiroyuki Wakabayashi, Hiroshi Matsumoto, Koichi Hashimoto, Susumu Teraguchi, Mitsunori Takase, Hirotoshi Hayasawa. Email:  [email protected]. Ilaria Passarini, Sharon Rossiter, John Malkinson, Mire Zloh. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Human Lactoferricin Is Partially Folded in Aqueous Solution and Is Better Stabilized in a Membrane Mimetic Solvent. Bibi Sedigheh Fazly Bazzaz, Shabnam Seyedi, Narjes Hoseini Goki, Bahman Khameneh. Murdock, J. Cleveland, K.R. LFchimera protects HeLa cells from invasion by Yersinia spp. Antimicrobial peptides and induced membrane curvature: Geometry, coordination chemistry, and molecular engineering. Join Facebook to connect with Beatrice Cossu and others you may know. Divya Upadhyay, Taruneet Kaur, Rajeev Kapila. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics. Lactoferrin: an alternative view of its role in human biological fluids Biochemical and Biophysical Research Communications. Véronique Witko-Sarsat, Philippe Rieu, Béatrice Descamps-Latscha, Philippe Lesavre, Lise Halbwachs-Mecarelli. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir. Andrea Kühnle, Christina E. Galuska, Kristina Zlatina, Sebastian P. Galuska. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Potential lactoferrin activity against pathogenic viruses. Secondary Structural Transformation of Bovine Lactoferricin Affects Its Antibacterial Activity. Bovine Lactoferricin Inhibits Basic Fibroblast Growth Factor- and Vascular Endothelial Growth Factor165-Induced Angiogenesis by Competing for Heparin-Like Binding Sites on Endothelial Cells. Jeanette Hammer Andersen, Håvard Jenssen, Tore Jarl Gutteberg. International Journal of Antimicrobial Agents. Hence, this region of lactoferricin B appears able to adopt a helical or sheetlike conformation, similar to what has been proposed for the amyloidogenic prion proteins and Alzheimer's β-peptides. Svendsen, Ø. Rekdal. - https://doi.org/10.1021/acs.accounts.8b00624, https://doi.org/10.1021/acs.biochem.6b01274, https://doi.org/10.1021/acs.biochem.5b00594, https://doi.org/10.1007/s12602-020-09726-8, https://doi.org/10.1016/j.bbamem.2020.183432, https://doi.org/10.1007/s10989-020-10127-2, https://doi.org/10.1007/s12551-020-00662-z, https://doi.org/10.1002/9781119256052.ch3, https://doi.org/10.1007/s10534-018-0136-0, https://doi.org/10.3390/pharmaceutics10030072, https://doi.org/10.1007/s11274-018-2444-5, https://doi.org/10.1007/s00253-017-8655-0, https://doi.org/10.18632/oncotarget.22210, https://doi.org/10.3390/molecules22081373, https://doi.org/10.3390/molecules22060987, https://doi.org/10.1007/978-1-4939-6737-7_1, https://doi.org/10.1016/j.resmic.2016.04.006, https://doi.org/10.1371/journal.pone.0150439, https://doi.org/10.1007/s11274-015-1986-z, https://doi.org/10.1016/j.bbamem.2015.11.007, https://doi.org/10.1016/j.biotechadv.2014.12.003, https://doi.org/10.1007/s10534-014-9749-0, https://doi.org/10.1007/s10534-014-9753-4, https://doi.org/10.1016/j.crvi.2014.08.003, https://doi.org/10.1371/journal.ppat.1003790, https://doi.org/10.1007/s00018-013-1260-1, https://doi.org/10.1016/j.cossms.2013.09.004, https://doi.org/10.1080/08927014.2013.773317, https://doi.org/10.1016/j.peptides.2012.07.021, https://doi.org/10.3390/molecules171012276, https://doi.org/10.1016/j.biochi.2011.12.016, https://doi.org/10.1016/j.bbamem.2011.11.023, https://doi.org/10.1371/journal.pone.0028197, https://doi.org/10.1007/s10534-011-9465-y, https://doi.org/10.1007/s10534-010-9390-5, https://doi.org/10.1016/j.pep.2010.05.013, https://doi.org/10.1007/s00018-010-0354-2, https://doi.org/10.1016/j.idairyj.2010.02.003, https://doi.org/10.1002/9780813811048.ch13, https://doi.org/10.1007/s12602-010-9039-2, https://doi.org/10.1016/j.bbamem.2009.11.021, https://doi.org/10.1016/j.chemphyslip.2009.09.002, https://doi.org/10.1016/j.bbrc.2009.08.083, https://doi.org/10.1016/j.ijantimicag.2009.05.012, https://doi.org/10.1016/j.bbamem.2009.01.002, https://doi.org/10.1017/S0007114508055633, https://doi.org/10.1051/medsci/2009254361, https://doi.org/10.1016/S0066-4103(08)00201-9, https://doi.org/10.1016/j.peptides.2008.02.019, https://doi.org/10.1103/PhysRevE.77.031913, https://doi.org/10.1016/j.bbamem.2007.11.008, https://doi.org/10.1016/S1554-4516(07)06005-X, https://doi.org/10.1016/S1572-5995(08)80015-4, https://doi.org/10.1016/j.bbamem.2007.04.018, https://doi.org/10.1016/j.antiviral.2007.03.012, https://doi.org/10.1016/j.yexcr.2007.05.015, https://doi.org/10.1111/j.1472-765X.2006.02076.x, https://doi.org/10.1016/j.idairyj.2006.06.014, https://doi.org/10.2353/ajpath.2006.051229, https://doi.org/10.1016/j.bbamem.2006.02.032, https://doi.org/10.1016/j.bbamem.2006.03.027, https://doi.org/10.1016/j.bbamem.2006.04.006, https://doi.org/10.1016/j.bbamem.2006.06.014, https://doi.org/10.1517/13543784.15.8.933, https://doi.org/10.1128/JB.188.1.328-334.2006, https://doi.org/10.1016/j.peptides.2005.03.056, https://doi.org/10.1201/9781420028836.sec2, https://doi.org/10.1128/AAC.49.8.3387-3395.2005, https://doi.org/10.1177/039463200501800214, https://doi.org/10.1016/j.bmc.2005.01.009, https://doi.org/10.1111/j.1574-6968.2004.tb09759.x, https://doi.org/10.1128/AAC.48.6.2190-2198.2004, https://doi.org/10.1016/j.peptides.2003.12.006, https://doi.org/10.1016/S0161-5890(03)00152-4, https://doi.org/10.1016/j.peptides.2003.08.023, https://doi.org/10.1046/j.1365-2672.2003.02071.x, https://doi.org/10.1016/S0166-3542(02)00214-0, https://doi.org/10.1046/j.1365-2672.2002.01762.x, https://doi.org/10.1046/j.0014-2956.2002.02760.x, https://doi.org/10.1002/0471203076.emm0418, https://doi.org/10.4049/jimmunol.167.5.2921, https://doi.org/10.1016/S0166-3542(01)00146-2, https://doi.org/10.1016/S0734-9750(01)00069-6, https://doi.org/10.1111/j.1399-3011.2001.00821.x, https://doi.org/10.1111/j.1399-3011.2001.00835.x, https://doi.org/10.1034/j.1399-3011.2001.00806.x, https://doi.org/10.1034/j.1399-3011.2000.00770.x, https://doi.org/10.1038/labinvest.3780067, https://doi.org/10.1016/S0005-2736(99)00175-3, https://doi.org/10.1016/S0958-6946(00)00089-3, https://doi.org/10.1016/S0005-2736(99)00198-4, https://doi.org/10.1080/07391102.1999.10508368, https://doi.org/10.1111/j.1574-6968.1999.tb08730.x, https://doi.org/10.1016/S0014-5793(99)00214-8, https://doi.org/10.1016/S0952-7915(99)80005-3, https://doi.org/10.1007/978-0-387-79382-5_13.
2020 beatrice cossu bionda